\(\int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx\) [672]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 97 \[ \int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \cot ^8(c+d x)}{8 d}-\frac {a \cot ^{10}(c+d x)}{10 d}+\frac {a \csc ^3(c+d x)}{3 d}-\frac {3 a \csc ^5(c+d x)}{5 d}+\frac {3 a \csc ^7(c+d x)}{7 d}-\frac {a \csc ^9(c+d x)}{9 d} \]

[Out]

-1/8*a*cot(d*x+c)^8/d-1/10*a*cot(d*x+c)^10/d+1/3*a*csc(d*x+c)^3/d-3/5*a*csc(d*x+c)^5/d+3/7*a*csc(d*x+c)^7/d-1/
9*a*csc(d*x+c)^9/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2913, 2687, 14, 2686, 276} \[ \int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \cot ^{10}(c+d x)}{10 d}-\frac {a \cot ^8(c+d x)}{8 d}-\frac {a \csc ^9(c+d x)}{9 d}+\frac {3 a \csc ^7(c+d x)}{7 d}-\frac {3 a \csc ^5(c+d x)}{5 d}+\frac {a \csc ^3(c+d x)}{3 d} \]

[In]

Int[Cot[c + d*x]^7*Csc[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

-1/8*(a*Cot[c + d*x]^8)/d - (a*Cot[c + d*x]^10)/(10*d) + (a*Csc[c + d*x]^3)/(3*d) - (3*a*Csc[c + d*x]^5)/(5*d)
 + (3*a*Csc[c + d*x]^7)/(7*d) - (a*Csc[c + d*x]^9)/(9*d)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 2686

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2913

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]),
 x_Symbol] :> Dist[a, Int[Cos[e + f*x]^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[Cos[e + f*x]^p*(d*Sin[e +
f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && IntegerQ[n] && ((LtQ[p, 0]
&& NeQ[a^2 - b^2, 0]) || LtQ[0, n, p - 1] || LtQ[p + 1, -n, 2*p + 1])

Rubi steps \begin{align*} \text {integral}& = a \int \cot ^7(c+d x) \csc ^3(c+d x) \, dx+a \int \cot ^7(c+d x) \csc ^4(c+d x) \, dx \\ & = -\frac {a \text {Subst}\left (\int x^2 \left (-1+x^2\right )^3 \, dx,x,\csc (c+d x)\right )}{d}-\frac {a \text {Subst}\left (\int x^7 \left (1+x^2\right ) \, dx,x,-\cot (c+d x)\right )}{d} \\ & = -\frac {a \text {Subst}\left (\int \left (-x^2+3 x^4-3 x^6+x^8\right ) \, dx,x,\csc (c+d x)\right )}{d}-\frac {a \text {Subst}\left (\int \left (x^7+x^9\right ) \, dx,x,-\cot (c+d x)\right )}{d} \\ & = -\frac {a \cot ^8(c+d x)}{8 d}-\frac {a \cot ^{10}(c+d x)}{10 d}+\frac {a \csc ^3(c+d x)}{3 d}-\frac {3 a \csc ^5(c+d x)}{5 d}+\frac {3 a \csc ^7(c+d x)}{7 d}-\frac {a \csc ^9(c+d x)}{9 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.33 \[ \int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a \csc ^3(c+d x)}{3 d}+\frac {a \csc ^4(c+d x)}{4 d}-\frac {3 a \csc ^5(c+d x)}{5 d}-\frac {a \csc ^6(c+d x)}{2 d}+\frac {3 a \csc ^7(c+d x)}{7 d}+\frac {3 a \csc ^8(c+d x)}{8 d}-\frac {a \csc ^9(c+d x)}{9 d}-\frac {a \csc ^{10}(c+d x)}{10 d} \]

[In]

Integrate[Cot[c + d*x]^7*Csc[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

(a*Csc[c + d*x]^3)/(3*d) + (a*Csc[c + d*x]^4)/(4*d) - (3*a*Csc[c + d*x]^5)/(5*d) - (a*Csc[c + d*x]^6)/(2*d) +
(3*a*Csc[c + d*x]^7)/(7*d) + (3*a*Csc[c + d*x]^8)/(8*d) - (a*Csc[c + d*x]^9)/(9*d) - (a*Csc[c + d*x]^10)/(10*d
)

Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.91

method result size
derivativedivides \(-\frac {a \left (\frac {\left (\csc ^{10}\left (d x +c \right )\right )}{10}+\frac {\left (\csc ^{9}\left (d x +c \right )\right )}{9}-\frac {3 \left (\csc ^{8}\left (d x +c \right )\right )}{8}-\frac {3 \left (\csc ^{7}\left (d x +c \right )\right )}{7}+\frac {\left (\csc ^{6}\left (d x +c \right )\right )}{2}+\frac {3 \left (\csc ^{5}\left (d x +c \right )\right )}{5}-\frac {\left (\csc ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\csc ^{3}\left (d x +c \right )\right )}{3}\right )}{d}\) \(88\)
default \(-\frac {a \left (\frac {\left (\csc ^{10}\left (d x +c \right )\right )}{10}+\frac {\left (\csc ^{9}\left (d x +c \right )\right )}{9}-\frac {3 \left (\csc ^{8}\left (d x +c \right )\right )}{8}-\frac {3 \left (\csc ^{7}\left (d x +c \right )\right )}{7}+\frac {\left (\csc ^{6}\left (d x +c \right )\right )}{2}+\frac {3 \left (\csc ^{5}\left (d x +c \right )\right )}{5}-\frac {\left (\csc ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\csc ^{3}\left (d x +c \right )\right )}{3}\right )}{d}\) \(88\)
parallelrisch \(\frac {a \left (\sec ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\csc ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (-4239774-7986510 \cos \left (2 d x +2 c \right )-49770 \cos \left (8 d x +8 c \right )-860160 \sin \left (7 d x +7 c \right )-172032 \sin \left (5 d x +5 c \right )-1066275 \cos \left (6 d x +6 c \right )+2908160 \sin \left (d x +c \right )-4792320 \sin \left (3 d x +3 c \right )-3177720 \cos \left (4 d x +4 c \right )+4977 \cos \left (10 d x +10 c \right )\right )}{169114337280 d}\) \(127\)
risch \(-\frac {4 i a \left (315 i {\mathrm e}^{16 i \left (d x +c \right )}+210 \,{\mathrm e}^{17 i \left (d x +c \right )}+630 i {\mathrm e}^{14 i \left (d x +c \right )}+42 \,{\mathrm e}^{15 i \left (d x +c \right )}+2205 i {\mathrm e}^{12 i \left (d x +c \right )}+1170 \,{\mathrm e}^{13 i \left (d x +c \right )}+1764 i {\mathrm e}^{10 i \left (d x +c \right )}-710 \,{\mathrm e}^{11 i \left (d x +c \right )}+2205 i {\mathrm e}^{8 i \left (d x +c \right )}+710 \,{\mathrm e}^{9 i \left (d x +c \right )}+630 i {\mathrm e}^{6 i \left (d x +c \right )}-1170 \,{\mathrm e}^{7 i \left (d x +c \right )}+315 i {\mathrm e}^{4 i \left (d x +c \right )}-42 \,{\mathrm e}^{5 i \left (d x +c \right )}-210 \,{\mathrm e}^{3 i \left (d x +c \right )}\right )}{315 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{10}}\) \(194\)

[In]

int(cos(d*x+c)^7*csc(d*x+c)^11*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-a/d*(1/10*csc(d*x+c)^10+1/9*csc(d*x+c)^9-3/8*csc(d*x+c)^8-3/7*csc(d*x+c)^7+1/2*csc(d*x+c)^6+3/5*csc(d*x+c)^5-
1/4*csc(d*x+c)^4-1/3*csc(d*x+c)^3)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.48 \[ \int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {630 \, a \cos \left (d x + c\right )^{6} - 630 \, a \cos \left (d x + c\right )^{4} + 315 \, a \cos \left (d x + c\right )^{2} + 8 \, {\left (105 \, a \cos \left (d x + c\right )^{6} - 126 \, a \cos \left (d x + c\right )^{4} + 72 \, a \cos \left (d x + c\right )^{2} - 16 \, a\right )} \sin \left (d x + c\right ) - 63 \, a}{2520 \, {\left (d \cos \left (d x + c\right )^{10} - 5 \, d \cos \left (d x + c\right )^{8} + 10 \, d \cos \left (d x + c\right )^{6} - 10 \, d \cos \left (d x + c\right )^{4} + 5 \, d \cos \left (d x + c\right )^{2} - d\right )}} \]

[In]

integrate(cos(d*x+c)^7*csc(d*x+c)^11*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/2520*(630*a*cos(d*x + c)^6 - 630*a*cos(d*x + c)^4 + 315*a*cos(d*x + c)^2 + 8*(105*a*cos(d*x + c)^6 - 126*a*c
os(d*x + c)^4 + 72*a*cos(d*x + c)^2 - 16*a)*sin(d*x + c) - 63*a)/(d*cos(d*x + c)^10 - 5*d*cos(d*x + c)^8 + 10*
d*cos(d*x + c)^6 - 10*d*cos(d*x + c)^4 + 5*d*cos(d*x + c)^2 - d)

Sympy [F(-1)]

Timed out. \[ \int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**7*csc(d*x+c)**11*(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.95 \[ \int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {840 \, a \sin \left (d x + c\right )^{7} + 630 \, a \sin \left (d x + c\right )^{6} - 1512 \, a \sin \left (d x + c\right )^{5} - 1260 \, a \sin \left (d x + c\right )^{4} + 1080 \, a \sin \left (d x + c\right )^{3} + 945 \, a \sin \left (d x + c\right )^{2} - 280 \, a \sin \left (d x + c\right ) - 252 \, a}{2520 \, d \sin \left (d x + c\right )^{10}} \]

[In]

integrate(cos(d*x+c)^7*csc(d*x+c)^11*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/2520*(840*a*sin(d*x + c)^7 + 630*a*sin(d*x + c)^6 - 1512*a*sin(d*x + c)^5 - 1260*a*sin(d*x + c)^4 + 1080*a*s
in(d*x + c)^3 + 945*a*sin(d*x + c)^2 - 280*a*sin(d*x + c) - 252*a)/(d*sin(d*x + c)^10)

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.95 \[ \int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {840 \, a \sin \left (d x + c\right )^{7} + 630 \, a \sin \left (d x + c\right )^{6} - 1512 \, a \sin \left (d x + c\right )^{5} - 1260 \, a \sin \left (d x + c\right )^{4} + 1080 \, a \sin \left (d x + c\right )^{3} + 945 \, a \sin \left (d x + c\right )^{2} - 280 \, a \sin \left (d x + c\right ) - 252 \, a}{2520 \, d \sin \left (d x + c\right )^{10}} \]

[In]

integrate(cos(d*x+c)^7*csc(d*x+c)^11*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/2520*(840*a*sin(d*x + c)^7 + 630*a*sin(d*x + c)^6 - 1512*a*sin(d*x + c)^5 - 1260*a*sin(d*x + c)^4 + 1080*a*s
in(d*x + c)^3 + 945*a*sin(d*x + c)^2 - 280*a*sin(d*x + c) - 252*a)/(d*sin(d*x + c)^10)

Mupad [B] (verification not implemented)

Time = 10.81 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.95 \[ \int \cot ^7(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {-\frac {a\,{\sin \left (c+d\,x\right )}^7}{3}-\frac {a\,{\sin \left (c+d\,x\right )}^6}{4}+\frac {3\,a\,{\sin \left (c+d\,x\right )}^5}{5}+\frac {a\,{\sin \left (c+d\,x\right )}^4}{2}-\frac {3\,a\,{\sin \left (c+d\,x\right )}^3}{7}-\frac {3\,a\,{\sin \left (c+d\,x\right )}^2}{8}+\frac {a\,\sin \left (c+d\,x\right )}{9}+\frac {a}{10}}{d\,{\sin \left (c+d\,x\right )}^{10}} \]

[In]

int((cos(c + d*x)^7*(a + a*sin(c + d*x)))/sin(c + d*x)^11,x)

[Out]

-(a/10 + (a*sin(c + d*x))/9 - (3*a*sin(c + d*x)^2)/8 - (3*a*sin(c + d*x)^3)/7 + (a*sin(c + d*x)^4)/2 + (3*a*si
n(c + d*x)^5)/5 - (a*sin(c + d*x)^6)/4 - (a*sin(c + d*x)^7)/3)/(d*sin(c + d*x)^10)